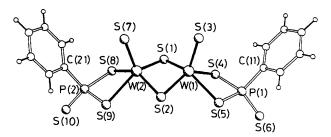
281

In situ Synthesis of Phenyltrithiophosphonate: Isolation and Structure of $[PPh_4]_2[W_2S_4\{S_2(S)PPh\}_2]$


Jamie M. Slater,^a C. David Garner,*^a and William Clegg^b

^a The Chemistry Department, Manchester University, Manchester M13 9PL, U.K.

Department of Inorganic Chemistry, The University, Newcastle upon Tyne NE1 7RU, U.K.

 $PhP(S)S_2^2-has$ been prepared directly by the reaction of $[PPh_4]_2[WS_4]$ with $PhPCl_2$; $[PPh_4]_2[W_2S_4\{S_2(S)PPh\}_2]$ has been isolated and the anion shown to involve a W_2S_4 core to which are ligated two bidentate $PhP(S)S_2$ moieties.

The d⁰ tetrathiometallates $[MS_4]^{2-}$ (M = Mo, W) have proved to be versatile synthetic reagents, especially for the generation of a host of metal-sulphur clusters.¹ Reactions of these anions with non-metallic species are rather limited. However, we have explored several of these and herein report that $[PPh_4]_2[WS_4]$ reacts with PhPCl₂ at ambient temperature to form $[PPh_4]_2[W_2S_4\{S_2(S)PPh\}_2]$, which contains phenyltrithiophosphonate ligands. The title compound was obtained by the addition of $[PPh_4]_2[WS_4]$ (3.1 g, 3.13 mmol) in MeCN (30 cm³) to PhPCl₂ (0.56 g, 3.13 mmol) at room temperature. The resultant mixture was stirred for *ca*. 6 h under an atmosphere of purified dinitrogen, during which time a yellow powder was deposited. This precipitate was separated by filtration, washed with Et₂O, dried, and redissolved in dried dimethylformamide (DMF); orange crystals were obtained by the slow diffusion of

Figure 1. Structure of the anion of $[PPh_4]_2[W_2S_4\{S_2(S)PPh\}_2]$. Selected dimensions: W(1)–W(2) 2.828(1), W–S_µ 2.321(3)–2.331(2), W–S_t 2.115(3) and 2.120(3), W–S_{ligand} 2.429(3)–2.463(2), P–S_µ 2.050(4)–2.073(4), P–S_t 1.929(3) and 1.945(4) Å; S_t–W–S_µ 105.1(1) –110.5(1), S_µ–W–S_µ 101.1(1) and 101.2(1), S_t–W–S_{ligand} 103.4(1)– 108.8(1); S_{ligand}–W–S_{ligand} 76.7(1) and 77.6(1); S_t–P–S_{ligand} 116.4(2)– 118.1(2)°.

 Et_2O into this solution. The analytically pure product was obtained in *ca*. 30% yield.

Crystals, obtained as described above, proved suitable for examination by X-ray crystallography[†] and the structure of the anion in the [PPh₄]⁺ salt is shown in Figure 1. The anion consists of a central $W_2S_4^{2+}$ core, in which each metal is bound to a bidentate PhP(S)S₂²⁻ ligand which has a free P=S bond. Each tungsten is bound to a square pyramidal arrangement of five sulphur atoms and the two square pyramids share a common edge [S(1), S(2)] to form a dimer with a *syn* configuration and a W ··· W separation of 2.828(1) Å. This geometry closely resembles that of the other structurally characterised complexes which contain a $W_2S_4\{S_4\}$ centre, *viz.* [$W_2S_4\{WS_4\}_2$]^{2-,2} [$W_2S_4\{SCH_2CH_2S\}_2$]^{2-,3} [W_2S_4 -{ S_2CNEt_2 }], and [$W_2S_4\{S_2P(OEt)_2\}_2$].⁴ The W ··· W separation of this last system (2.82 Å) bears the closest resemblance to that of [$W_2S_4\{S_2(S)PPh\}_2$]²⁻. The immediate environment of phosphorus in the anion reported here closely resembles that in Lawesson's reagent, $[\{MeO-4-C_6H_4P(S)\}_2S_2]_{.5}$ Indeed, several complexes containing MeO-4-C_6H_4P(S)S_2 (=L) ligands, *viz*. [Cp₂TiL] (Cp = C₅H₅)⁶ and [(Ph₃P)₂ML] (M = Ni, Pd, Et), have been prepared from Lawesson's reagent. Also, bis(dialkylthiophosphonyl)disulphanes, [{R₂P(S)S}₂], have been shown to react with metal carbonyls to form dithiophosphinate complexes, *e.g.* [Mo₃S₇{S₂PR₂}₃]⁺ and [W₂S₄{S₂PR₂}₂] (R = Et, Prⁿ).⁷ However, the *in situ* synthesis of an PhP(S)S₂ complex, from PhPCl₂ and [WS₄]²⁻, has no direct chemical precedent. Although the reaction proceeds in reasonably good (*ca.* 30% yields) it is not stoicheiometric since (*inter alia*) W^{V1} is reduced to W^V with P^{III} being oxidised to P^V.

The ³¹P NMR spectrum of the title complex in CD_2Cl_2/DMF contains resonances at $\delta +22$ ([PPh₄]⁺) and +120 p.p.m. [PhP(S)S₂]. The latter may be compared to the corresponding resonances for [(L₂)M{S₂(S)PC₆H₄-4-OMe}] [M = Ni, Pd, Pt; L₂ = (Ph₃P)₂ or 1,2-bis(diphenylphosphino)-ethane]^{8,9} of δ +88 to +101 p.p.m.⁹ The v(P=S) stretching frequency occurs at 666 cm⁻¹. This absorption remains unchanged upon exposure of the solid and solutions of the title compound to air; this observation, coupled with the lack of appearance of a v(P=O) bond, shows that the P=S bond in this compound is stable in air, unlike that in the [(Ph₃P)₂M{S₂(S)PC₆H₄-4-OMe}] complexes.⁹

We thank the S.E.R.C. for the provision of a studentship (to J. M. S.).

Received, 30th October 1989; Com. 9/04651H

References

- C. D. Garner, in 'Comprehensive Coordination Chemistry,' eds.
 G. Wilkinson, R. D. Gillard, and J. A. McCleverty, Pergamon Press, 1987, vol. 3, pp. 1421–1430.
- 2 F. Secheresse, J. Lefebvre, J. C. Daran, and Y. Jeannin, *Inorg. Chem.*, 1982, 21, 1311.
- 3 W.-H. Pan, T. Chandler, J. H. Enemark, and E. I. Stiefel, *Inorg. Chem.*, 1984, 23, 4265.
- 4 M. G. B. Drew, R. J. Hobson, P. P. E. M. Mumba, D. A. Rice, and N. Turp, J. Chem. Soc., Dalton Trans., 1987, 1163.
- 5 R. A. Cherkasov, G. A. Kutyrev, and A. N. Pudovik, *Tetrahedron*, 1985, **41**, 2567.
- 6 G. A. Zank and T. B. Rauchfuss, Organometallics, 1984, 3, 1191.
- 7 H. Keck, W. Kuchen, J. Mathow, B. Meyer, D. Mootz, and H. Wunderlich, *Angew. Chem.*, *Int. Ed. Engl.*, 1981, **20**, 975; H. Keck, W. Kuchen, and J. Mathow, *Z. Anorg. Allg. Chem.*, 1986, **537**, 123.
- 8 R. Jones, D. J. Williams, P. T. Wood, and J. D. Woollins, *Polyhedron*, 1987, **6**, 539.
- 9 P. T. Wood and J. D. Woollins, *Transition Met. Chem.*, 1987, 12, 403.

[†] Crystal data: C₆₀H₅₀P₄S₁₀W₂, triclinic, space group $P\overline{1}$, Z = 2, a = 11.925(2), b = 13.457(2), c = 21.145(3) Å, $\alpha = 99.02(1)$, $\beta = 90.79(1)$, $\gamma = 111.89(1)^\circ$, U = 3100.0 Å³, $D_c = 1.696$ g cm⁻³, F(000) = 2088, Mo- K_{α} radiation, $\lambda = 0.71073$ Å, $\mu = 4.25$ mm⁻¹. The structure was determined from a whole sphere of absorption-corrected data [2 θ_{max} 50°, 21 756 reflections, 10 887 unique, 8918 with $F > 4\sigma(F)$], and refined to R = 0.058, $R_w = 0.050$ with anisotropic thermal parameters and rigid idealised phenyl groups [C-C 1.395, C-H 0.96 Å, $U(H) = 1.2U_{equiv.}(C)$]. Atomic co-ordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.